Tuesday, May 26, 2020

Augmenting an Assisted Living Lab with Non-Intrusive Load Monitoring

The global epidemic of the COVID-19 virus required severe restrictions on travel and meetings. Among many other events, also the International Instrumentation and Measurement Technology Conference (I2MTC 2020) could not take place physically.

Therefore, we made our paper presentation in the form of a video:


In her talk, Hafsa Bousbiat describes how abnormal behavior can be detected among common household devices using Non-Intrusive Load Monitoring. The need for reducing our energy consumption footprint and the increasing number of electric devices in today’s homes is calling for new solutions that allow users to efficiently manage their energy consumption. Real-time feedback at device level would be of significant benefit for this application. In addition, the aging population and their wish to be more autonomous have motivated the use of this same real-time data to indirectly monitor the household’s occupants for their safety.
By breaking down aggregate power consumption into appliance level consumption, Non-Intrusive Load Monitoring allows for reducing the energy consumption footprint and has the potential to indirectly monitor the elderly and help them to fulfil their wish to be more autonomous in a secure manner. Therefore, the work aims to depict an architecture supporting non-intrusive measurement with a smart electricity meter and the handling of these data using an open-source platform that allows us to visualize and process real-time data about the total consumed energy. The proposed architecture is depicted in the figure below.

Proposed architecture for integrating an AAL with an energy monitoring system


More details about our work can be found in the full version of our paper here.

Please reference the paper as follows:
 
Hafsa Bousbiat, Christoph Klemenjak, Gerhard Leitner, and Wilfried Elmenreich. Augmenting an Assisted Living Lab with Non-Intrusive Load Monitoring. International Instrumentation and Measurement Technology Conference. May 2020.

This work was supported by DECIDE - Doctoral school on "Decision-making in a digital environment" at the University of Klagenfurt.