We are happy to announce that our paper "On the Applicability of Correlation Filters for Appliance Detection in Smart Meter Readings" was accepted and presented at this year's SmartGridComm conference in Dresden.
With our load classification approach based on correlation filters, we aim to provide a low-cost non-Intrusive Load Monitoring (NILM) method for measurement equipment with limited computational capabilities such as networked sensors or smart plugs. One of these small devices to run such an algorithm on would be our YoMo metering board.
Abstract:
With our load classification approach based on correlation filters, we aim to provide a low-cost non-Intrusive Load Monitoring (NILM) method for measurement equipment with limited computational capabilities such as networked sensors or smart plugs. One of these small devices to run such an algorithm on would be our YoMo metering board.
Abstract:
"Communication systems utilise correlation filters to detect waveforms. In a broader sense, these filters examine the amount of resemblance between a template pattern and the input pattern. In the domain of smart grids, many applications require the detection of active electrical appliances, their condition as well as their current state of operation. Furthermore, the identification of power eaters, the recognition of ageing effects, and the forecast of required maintenance represent important challenges in (home) energy management systems.
In this paper, we examine the applicability of correlation filters as a possible solution to meet such challenges. First, we introduce the concept of predictability to power consumption patterns of electrical appliances. Second, we present our concept and the implementation of correlation filters for this kind of application. The correlation filters utilise a particular consumption pattern of an electrical appliance to detect the respective appliance in energy readings from smart meters and smart plugs.
Lastly, we assess the performance of the correlation filters on the real-world energy consumption dataset GREEND, which provides readings from smart meter data as well as appliance-level measurement equipment. As the results approve, the correlation filters show a good performance for appliances with predictable consumption patterns such as refrigerators, dishwashers, or washing machines. Thus, we propose that future work should evaluate the applicability of correlation filters in appliance diagnosis systems."
Christoph Klemenjak presenting at the load classification session
C. Klemenjak and W. Elmenreich. On the Applicability of Correlation Filters for Appliance Detection in Smart Meter Readings. In Proceedings of the 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm), Dresden, Germany, October 2017.
The Correlation Filters were evaluated on real-world energy consumption data provided by the GREEND dataset, which is available at Sourceforge:
A. Monacchi, D. Egarter, W. Elmenreich, S. D'Alessandro, and A. M. Tonello. GREEND: An energy consumption dataset of households in italy and austria. In Proc. IEEE International Conference on Smart Grid Communications (SmartGridComm'14), Venice, Italy, 2014.